イネのフィトアレキシンに関連する論文リスト(発表年順)

English Version

発表年の新しいものが上になっています.

イネのフィトアレキシンのリストはこちらです.

イネのフィトアレキシン研究の歴史のページもあります.

  1. Tu, S. et al. De novo biosynthesis of sakuranetin from glucose by engineered Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. in press.
  2. Wang, L., Fu, J., Shen, Q., and Wang, Q. OsWRKY10 extensively activates multiple rice diterpenoid phytoalexin biosynthesis to enhance rice blast resistance. Plant J. in press.
  3. Zhao, L., Oyagbenro, R., Feng, Y., Xu, M., and Peters, R.J. Oryzalexin S biosynthesis: a cross-stitched disappearing pathway. aBIOTECH in press.
  4. Kariya, K. et al. (2023). Natural variation of diterpenoid phytoalexins in rice: Aromatic diterpenoid phytoalexins in specific cultivars. Phytochemistry 211: 113708.
  5. Inagaki, H. et al. (2023). Genome editing reveals both the crucial role of OsCOI2 in jasmonate signaling and the functional diversity of COI1 homologs in rice. Plant Cell Physiol. 64: 405–421.
  6. Pires, G.H.D.C.R., Barbosa, H., Almeida, R.B.P., Lago, J.H.G., and Caseli, L. (2023). Ethanolamine phospholipids at the air-water interface as cell membranes models of microorganisms to study the nanotoxicology of sakuranetin. Thin Solid Films 770: 139768.
  7. Kato-Noguchi, H. (2023). Defensive molecules momilactones A and B: function, biosynthesis, induction and occurrence. Toxins 15: 241.
  8. Wang, L. et al. (2023). The OsBDR1-MPK3 module negatively regulates blast resistance by suppressing the jasmonate signaling and terpenoid biosynthesis pathway. Proc. Natl. Acad. Sci. U. S. A. 120: e2211102120.
  9. Sun, B. et al. (2023). OsGLP3-7 positively regulates rice immune response by activating hydrogen peroxide, jasmonic acid, and phytoalexin metabolic pathways. Mol. Plant Pathol. 24: 248–261.
  10. Wang, Z., Nelson, D.R., Zhang, J., Wan, X., and Peters, R.J. (2023). Plant (di)terpenoid evolution: from pigments to hormones and beyond. Nat. Prod. Rep. 40: 452–469.
  11. Junaid, M. et al. (2023). Sakuranetin and its therapeutic potentials – a comprehensive review. Z. Naturforsch. C 78: 27–48.
  12. Valletta, A., Iozia, L.M., Fattorini, L., and Leonelli, F. (2023). Rice phytoalexins: half a century of amazing discoveries; part I: distribution, biosynthesis, chemical synthesis, and biological activities. Plants 12: 260.
  13. da Cruz Ramos Pires, G.H. et al. (2022). Sakuranetin interacting with cell membranes models: Surface chemistry combined with molecular simulation. Colloids Surf., B 216: 112546.
  14. Smit, S.J., and Lichman, B.R. (2022). Plant biosynthetic gene clusters in the context of metabolic evolution. Nat. Prod. Rep. 39: 1465–1482.
  15. Rahaman, F. et al. (2022). Allelopathic potential in rice - a biochemical tool for plant defence against weeds. Front. Plant Sci. 13: 1072723.
  16. Elhamouly, N.A. et al. (2022). The hidden power of secondary metabolites in plant-fungi interactions and sustainable phytoremediation. Front. Plant Sci. 13: 1044896.
  17. Sánchez-Sanuy, F. et al. (2022). Iron induces resistance against the rice blast fungus Magnaporthe oryzae through potentiation of immune responses. Rice 15: 68.
  18. Bernardo, L.R., and Braga, A.R.C. (2022). Sakuranetin state of the art: physical properties, biological effects, and biotechnological trends. Ind. Biotechnol. 18: 341–350.
  19. Duda-Madej, A., Stecko, J., Sobieraj, J., Szymańska, N., and Kozłowska, J. (2022). Naringenin and its derivatives—health-promoting phytobiotic against resistant bacteria and fungi in humans. Antibiotics 11: 1628.
  20. Anh, L.H. et al. (2022). Cytotoxic mechanism of momilactones A and B against acute promyelocytic leukemia and multiple myeloma cell lines. Cancers 14: 4848.
  21. Vicente-Silva, W. et al. (2022). Sakuranetin exerts anticonvulsant effect in bicuculline-induced seizures. Fundam. Clin. Pharmacol. 36: 663–673.
  22. Wu, D. et al. (2022). Lateral transfers lead to the birth of momilactone biosynthetic gene clusters in grass. Plant J. 111: 1354–1367.
  23. Knoch, E. et al. (2022). Transcriptional response of a target plant to benzoxazinoid and diterpene allelochemicals highlights commonalities in detoxification. BMC Plant Biol. 22: 402.
  24. Fang, H. et al. (2022). Function of hydroxycinnamoyl transferases for the biosynthesis of phenolamides in rice resistance to Magnaporthe oryzae. J. Genet. Genomics 49: 776–786.
  25. Hoang Anh, L. et al. (2022). Rice momilactones and phenolics: expression of relevant biosynthetic genes in response to UV and chilling stresses. Agronomy 12: 1731.
  26. Desmedt, W. et al. (2022). Rice diterpenoid phytoalexins are involved in defence against parasitic nematodes and shape rhizosphere nematode communities. New Phytol. 235: 1231–1245.
  27. Shinya, T. et al. (2022). Chitooligosaccharide elicitor and oxylipins synergistically elevate phytoalexin production in rice. Plant Mol. Biol. 109: 595–609.
  28. Yang, J., Lai, J., Kong, W., and Li, S. (2022). Asymmetric synthesis of sakuranetin-relevant flavanones for the identification of new chiral antifungal leads. J. Agric. Food Chem. 70: 3409–3419.
  29. Lu, J. et al. (2022). Identification of quantitative trait loci associated with resistance to Xanthomonas oryzae pv._ oryzae_ pathotypes prevalent in South China. Crop J. 10: 498–507.
  30. Yan, N. et al. (2022). Chromosome-level genome assembly of Zizania latifolia provides insights into its seed shattering and phytocassane biosynthesis. Commun. Biol. 5: 36.
  31. Li, R., Zhang, J., Li, Z., Peters, R.J., and Yang, B. (2022). Dissecting the labdane-related diterpenoid biosynthetic gene clusters in rice reveals directional cross-cluster phytotoxicity. New Phytol. 233: 878–889.
  32. Koga, J. et al. (2021). Sphingadienine-1-phosphate levels are regulated by a novel glycoside hydrolase family 1 glucocerebrosidase widely distributed in seed plants. J. Biol. Chem. 297: 101236.
  33. Xu, Y., Cheng, H.-F., Kong, C.-H., and Meiners, S.J. (2021). Intraspecific kin recognition contributes to interspecific allelopathy: A case study of allelopathic rice interference with paddy weeds. Plant Cell Environ. 44: 3709–3721.
  34. Shen, S. et al. (2021). An Oryza-specific hydroxycinnamoyl tyramine gene cluster contributes to enhanced disease resistance. Sci. Bull. 66: 2369–2380.
  35. Itoh, A. et al. (2021). Functional kaurene-synthase-like diterpene synthases lacking a gamma domain are widely present in Oryza and related species. Biosci. Biotechnol. Biochem. 85: 1945–1952.
  36. Yang, D. et al. (2021). Transcriptome analysis of rice response to blast fungus identified core genes involved in immunity. Plant Cell Environ. 44: 3103–3121.
  37. Tomita, K. et al. (2021). Genome-wide screening of genes associated with momilactone B sensitivity in the fission yeast Schizosaccharomyces pombe. G3: Genes, Genomes, Genet. 11: jkab156.
  38. Komkleow, S., Niyomploy, P., and Sangvanich, P. (2021). Maldi-mass spectrometry imaging for phytoalexins detection in RD6 Thai rice. Appl. Biochem. Microbiol. 57: 533–541.
  39. Yang, Z. et al. (2021). Genetic mapping identifies a rice naringenin O-glucosyltransferase that influences insect resistance. Plant J. 106: 1401–1413.
  40. Inagaki, H. et al. (2021). Deciphering OPDA signaling components in the momilactone-producing moss Calohypnum plumiforme. Front. Plant Sci. 12: 987.
  41. Ninkuu, V. et al. (2021). Biochemistry of terpenes and recent advances in plant protection. Int. J. Mol. Sci. 22: 5710.
  42. Ding, Y., Northen, T.R., Khalil, A., Huffaker, A., and Schmelz, E.A. (2021). Getting back to the grass roots: harnessing specialized metabolites for improved crop stress resilience. Curr. Opin. Biotechnol. 70: 174–186.
  43. Liang, J. et al. (2021). Rice contains a biosynthetic gene cluster associated with production of the casbane-type diterpenoid phytoalexin ent-10-oxodepressin. New Phytol. 231: 85–93.
  44. Serra Serra, N., Shanmuganathan, R., and Becker, C. (2021). Allelopathy in rice: a story of momilactones, kin recognition, and weed management. J. Exp. Bot. 72: 4022–4037.
  45. Xu, J. et al. (2021). Molecular dissection of rice phytohormone signaling involved in resistance to a piercing-sucking herbivore. New Phytol. 230: 1639–1652.
  46. Vo, K.T.X. et al. (2021). Proteomics and metabolomics studies on the biotic stress responses of rice: an update. Rice 14: 30.
  47. Westrick, N.M., Smith, D.L., and Kabbage, M. (2021). Disarming the host: detoxification of plant defense compounds during fungal necrotrophy. Front. Plant Sci. 12: 684.
  48. 岡田憲典 (2021). 下等植物で初めて見つかった防御物質の生合成遺伝子クラスター. 化学と生物 59: 56–58.
  49. Bizuneh, G.K. (2021). The chemical diversity and biological activities of phytoalexins. Adv. Tradit. Med. 21: 31–43.
  50. Nishimura, A. et al. (2021). Sugars in an aqueous extract of the spent substrate of the mushroom Hypsizygus marmoreus induce defense responses in rice. Biosci. Biotechnol. Biochem. 85: 743–755.
  51. De La Peña, R., and Sattely, E.S. (2021). Rerouting plant terpene biosynthesis enables momilactone pathway elucidation. Nat. Chem. Biol. 17: 205–212.
  52. Ahmed, S., and Kovinich, N. (2021). Regulation of phytoalexin biosynthesis for agriculture and human health. Phytochem. Rev. 20: 483–505.
  53. Shao, J., Sun, Y., Liu, H., and Wang, Y. (2021). Pathway elucidation and engineering of plant-derived diterpenoids. Curr. Opin. Biotechnol. 69: 10–16.
  54. Kitaoka, N. et al. (2021). Interdependent evolution of biosynthetic gene clusters for momilactone production in rice. Plant Cell 33: 290–305.
  55. Ng, L.C., Adila, Z.N., Shahrul Hafiz, E.M., and Aziz, A. (2021). Foliar spray of silicon enhances resistance against Pyricularia oryzae by triggering phytoalexin responds in aerobic rice. Eur. J. Plant Pathol. 159: 673–683.
  56. Löffler, L.E., Wirtz, C., and Fürstner, A. (2021). Collective total synthesis of casbane diterpenes: one strategy, multiple targets. Angew. Chem. Int. Ed. 60: 5316–5322.
  57. Dash, M. et al. (2021). A rice root-knot nematode Meloidogyne graminicola-resistant mutant rice line shows early expression of plant-defence genes. Planta 253: 108.
  58. Zhang, J. et al. (2021). A (conditional) role for labdane-related diterpenoid natural products in rice stomatal closure. New Phytol. 230: 698–709.
  59. Zhang, F. et al. (2020). Comparative proteomic analysis reveals novel insights into the interaction between rice and Xanthomonas oryzae pv. oryzae. BMC Plant Biol. 20: 563.
  60. Valette, M., Rey, M., Doré, J., Gerin, F., and Wisniewski-Dyé, F. (2020). Identification of a small set of genes commonly regulated in rice roots in response to beneficial rhizobacteria. Physiol. Mol. Biol. Plants 26: 2537–2551.
  61. 加藤尚 (2020). イネのモミラクトンBを中心とした植物由来アレロケミカルによる抑草力強化に関する基礎研究. 雑草研究 65: 41–44.
  62. Huong, C.T., Anh, T.T., Dat, T.D., Dang Khanh, T., and Dang Xuan, T. (2020). Uniparental inheritance of salinity tolerance and beneficial phytochemicals in rice. Agronomy 10: 1032.
  63. Molla, K.A. et al. (2020). Understanding sheath blight resistance in rice: the road behind and the road ahead. Plant Biotechnol. J. 18: 895–915.
  64. Park, H.L. et al. (2020). Two chalcone synthase isozymes participate redundantly in UV-induced sakuranetin synthesis in rice. Int. J. Mol. Sci. 21: 3777.
  65. Murphy, K.M., and Zerbe, P. (2020). Specialized diterpenoid metabolism in monocot crops: Biosynthesis and chemical diversity. Phytochemistry 172: 112289.
  66. Sperandio, E.M. et al. (2020). Signaling defense responses of upland rice to avirulent and virulent strains of Magnaporthe oryzae. J. Plant Physiol. 253: 153271.
  67. Zhan, C. et al. (2020). Selection of a subspecies-specific diterpene gene cluster implicated in rice disease resistance. Nat. Plants 6: 1447–1454.
  68. Bajsa-Hirschel, J., Pan, Z., and Duke, S.O. (2020). Rice momilactone gene cluster: transcriptional response to barnyard grass (Echinochloa crus-galli). Mol. Biol. Rep. 47: 1507–1512.
  69. Andama, J.B., Mujiono, K., Hojo, Y., Shinya, T., and Galis, I. (2020). Nonglandular silicified trichomes are essential for rice defense against chewing herbivores. Plant Cell Environ. 43: 2019–2032.
  70. Kariya, K. et al. (2020). Natural variation of diterpenoid phytoalexins in cultivated and wild rice species. Phytochemistry 180: 112518.
  71. Murata, K. et al. (2020). Natural variation in the expression and catalytic activity of a naringenin 7-O-methyltransferase influences antifungal defenses in diverse rice cultivars. Plant J. 101: 1103–1117.
  72. Zhou, F., and Pichersky, E. (2020). More is better: the diversity of terpene metabolism in plants. Curr. Opin. Plant Biol. 55: 1–10.
  73. Tian, D. et al. (2020). Loss function of SL (sekiguchi lesion) in the rice cultivar Minghui 86 leads to enhanced resistance to (hemi)biotrophic pathogens. BMC Plant Biol. 20: 507.
  74. Zhou, X. et al. (2020). Integrative metabolomic and transcriptomic analyses reveal metabolic changes and its molecular basis in rice mutants of the strigolactone pathway. Metabolites 10: 425.
  75. Wang, W. et al. (2020). Induction of defense in cereals by 4-fluorophenoxyacetic acid suppresses insect pest populations and increases crop yields in the field. Proc. Natl. Acad. Sci. U. S. A. 117: 12017–12028.
  76. Kong, W., Ding, L., and Xia, X. (2020). Identification and characterization of genes frequently responsive to Xanthomonas oryzae pv. oryzae and Magnaporthe oryzae infections in rice. BMC Genomics 21: 21.
  77. Mao, L. et al. (2020). Genomic evidence for convergent evolution of gene clusters for momilactone biosynthesis in land plants. Proc. Natl. Acad. Sci. U. S. A. 117: 12472–12480.
  78. Toyomasu, T., Shenton, M.R., and Okada, K. (2020). Evolution of labdane-related diterpene synthases in cereals. Plant Cell Physiol. 61: 1850–1859.
  79. Wang, X., Li, Z., Policarpio, L., Koffas, M.A.G., and Zhang, H. (2020). De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering. Appl. Microbiol. Biotechnol. 104: 4849–4861.
  80. Bauters, L. et al. (2020). Chorismate mutase and isochorismatase, two potential effectors of the migratory nematode Hirschmanniella oryzae, increase host susceptibility by manipulating secondary metabolite content of rice. Mol. Plant Pathol. 21: 1634–1646.
  81. Valdés, E. et al. (2020). Biological properties and absolute configuration of flavanones from Calceolaria thyrsiflora Graham. Front. Pharmacol. 11: 1125.
  82. Li, J.-L. et al. (2020). Bioactive constituents from the Bryophyta Hypnum plumaeforme. Chem. Biodiversity 17: e2000552.
  83. Quintanilla-Licea, R., Vargas-Villarreal, J., Verde-Star, M.J., Rivas-Galindo, V.M., and Torres-Hernández, Á.D. (2020). Antiprotozoal activity against Entamoeba histolytica of flavonoids isolated from Lippia graveolens Kunth. Molecules 25: 2464.
  84. Saleh, K.A. et al. (2020). Anticancer property of hexane extract of Suaeda fruticose plant leaves against different cancer cell lines. Trop. J. Pharm. Res. 19: 129–136.
  85. Stompor, M. (2020). A review on sources and pharmacological aspects of sakuranetin. Nutrients 12: 513.
  86. Kariya, K. et al. (2019). Variation of diterpenoid phytoalexin oryzalexin A production in cultivated and wild rice. Phytochemistry 166: 112057.
  87. Leonelli, F., Valletta, A., Migneco, M.L., and Marini Bettolo, R. (2019). Stemarane diterpenes and diterpenoids. Int. J. Mol. Sci. 20: 2627.
  88. Yamauchi, Y. et al. (2019). Sakuranetin downregulates inducible nitric oxide synthase expression by affecting interleukin-1 receptor and CCAAT/enhancer-binding protein β. J. Nat. Med. 73: 353–368.
  89. Estiati, A. (2019). Rice momilactones, potential allelochemical for weeds suppression. Asian J. Agric. 3: 6–15.
  90. Li, C. et al. (2019). Protective effect of sakuranetin in brain cells of dementia model rats. Cell. Mol. Biol. 65: 54–58.
  91. Ma, B. et al. (2019). Preventive effects of fluoro-substituted benzothiadiazole derivatives and chitosan oligosaccharide against the rice seedling blight induced by Fusarium oxysporum. Plants 8: 538.
  92. Minh, N.T. et al. (2019). Phytochemical analysis and potential biological activities of essential oil from rice leaf. Molecules 24: 546.
  93. Salvador-Guirao, R. et al. (2019). OsDCL1a activation impairs phytoalexin biosynthesis and compromises disease resistance in rice. Ann. Bot. 123: 79–93.
  94. Sánchez-Sanuy, F. et al. (2019). Osa-miR7695 enhances transcriptional priming in defense responses against the rice blast fungus. BMC Plant Biol. 19: 563.
  95. Kozłowska, J., Grela, E., Baczyńska, D., Grabowiecka, A., and Anioł, M. (2019). Novel O-alkyl derivatives of naringenin and their oximes with antimicrobial and anticancer activity. Molecules 24: 679.
  96. Quan, N.V., Thien, D.D., Khanh, T.D., Tran, H.-D., and Xuan, T.D. (2019). Momilactones A, B, and tricin in rice grain and by-products are potential skin aging inhibitors. Foods 8: 602.
  97. Quan, V.N. et al. (2019). Momilactones A and B are α-amylase and β-glucosidase inhibitors. Molecules 24: 482.
  98. Zang, H. et al. (2019). Mannan oligosaccharides trigger multiple defence responses in rice and tobacco as a novel danger-associated molecular pattern. Mol. Plant Pathol. 20: 1067–1079.
  99. Quan, V.N., Xuan, D.T., Tran, H.-D., and Dieu Thuy, T.N. (2019). Inhibitory activities of momilactones A, B, E, and 7-ketostigmasterol isolated from rice husk on paddy and invasive weeds. Plants 8: 159.
  100. Santana, F.P.R. et al. (2019). Inhibition of MAPK and STAT3-SOCS3 by sakuranetin attenuated chronic allergic airway inflammation in mice. Mediators Inflammation 2019: 1356356.
  101. Ishihara, A. et al. (2019). Induction of defense responses by extracts of spent mushroom substrates in rice. J. Pestic. Sci. 44: 89–96.
  102. Wari, D. et al. (2019). Honeydew-associated microbes elicit defense responses against brown planthopper in rice. J. Exp. Bot. 70: 1683–1696.
  103. Liao, Z.-X. et al. (2019). Dual RNA-seq of Xanthomonas oryzae pv. oryzicola infecting rice reveals novel insights into bacterial-plant interaction. PLOS ONE 14: e0215039.
  104. Gu, C.-Z. et al. (2019). Diterpenoids with herbicidal and antifungal activities from hulls of rice (Oryza sativa). Fitoterapia 136: 104183.
  105. Bathe, U., and Tissier, A. (2019). Cytochrome P450 enzymes: A driving force of plant diterpene diversity. Phytochemistry 161: 149–162.
  106. Shen, Q. et al. (2019). CYP71Z18 overexpression confers elevated blast resistance in transgenic rice. Plant Mol. Biol. 100: 579–589.
  107. Quan, N.V. et al. (2019). Contribution of momilactones A and B to diabetes inhibitory potential of rice bran: Evidence from in vitro assays. Saudi Pharm. J. 27: 643–649.
  108. Ahmad, A., Xuan, T.D., Minh, T.N., Siddiqui, N.A., and Van Quan, N. (2019). Comparative extraction and simple isolation improvement techniques of active constituents’ momilactone A and B from rice husks of Oryza sativa by HPLC analysis and column chromatography. Saudi Pharm. J. 27: 17–24.
  109. Wari, D. et al. (2019). Brown planthopper honeydew-associated symbiotic microbes elicit momilactones in rice. Plant Signaling Behav. 14: 1655335.
  110. Azizi, P. et al. (2019). Adaptation of the metabolomics profile of rice after Pyricularia oryzae infection. Plant Physiol. Biochem. 144: 466–479.
  111. Li, L.-L., Zhao, H.-H., and Kong, C.-H. (2019). (–)-Loliolide, the most ubiquitous lactone, is involved in barnyardgrass-induced rice allelopathy. J. Exp. Bot. 71: 1540–1550.
  112. Katsumata, S., Toshima, H., and Hasegawa, M. (2018). Xylosylated detoxification of the rice flavonoid phytoalexin sakuranetin by the rice sheath blight fungus Rhizoctonia solani. Molecules 23: 276.
  113. Chen, X. et al. (2018). The rice terpene synthase gene OsTPS19 functions as an (S)-limonene synthase in planta, and its overexpression leads to enhanced resistance to the blast fungus Magnaporthe oryzae. Plant Biotechnol. J. 16: 1778–1787.
  114. Kwon, D.-H., Ji, J.-H., Yim, S.-H., Kim, B.-S., and Choi, H.-J. (2018). Suppression of influenza B virus replication by sakuranetin and mode of its action. Phytother. Res. 32: 2475–2479.
  115. Kiryu, M. et al. (2018). Rice terpene synthase 18 (OsTPS18) encodes a sesquiterpene synthase that produces an antibacterial (E)-nerolidol against a bacterial pathogen of rice. J. Gen. Plant Pathol. 84: 221–229.
  116. Wang, W. et al. (2018). Rice secondary metabolites: structures, roles, biosynthesis, and metabolic regulation. Molecules 23: 3098.
  117. Reveglia, P. et al. (2018). Pimarane diterpenes: Natural source, stereochemical configuration, and biological activity. Chirality 30: 1115–1134.
  118. Ngoc Minh, T. et al. (2018). Momilactones A and B: optimization of yields from isolation and purification. Separations 5: 28.
  119. Zhao, M., Cheng, J., Guo, B., Duan, J., and Che, C.-t. (2018). Momilactone and related diterpenoids as potential agricultural chemicals. J. Agric. Food Chem. 66: 7859–7872.
  120. Copmans, D. et al. (2018). Methylated flavonoids as anti-seizure agents: naringenin 4′,7-dimethyl ether attenuates epileptic seizures in zebrafish and mouse models. Neurochem. Int. 112: 124–133.
  121. Shinya, T. et al. (2018). Integration of danger peptide signals with herbivore-associated molecular pattern signaling amplifies anti-herbivore defense responses in rice. Plant J. 94: 626–637.
  122. Lu, X. et al. (2018). Inferring roles in defense from metabolic allocation of rice diterpenoids. Plant Cell 30: 1119–1131.
  123. Morimoto, N. et al. (2018). Induced phenylamide accumulation in response to pathogen infection and hormone treatment in rice (Oryza sativa). Biosci. Biotechnol. Biochem. 82: 407–416.
  124. Ye, Z. et al. (2018). In planta functions of cytochrome P450 monooxygenase genes in the phytocassane biosynthetic gene cluster on rice chromosome 2. Biosci. Biotechnol. Biochem. 82: 1021–1030.
  125. Jeong, H. et al. (2018). Hepatic metabolism of sakuranetin and its modulating effects on cytochrome P450s and UDP-glucuronosyltransferases. Molecules 23: 1542.
  126. Quan, N.T., and Xuan, T.D. (2018). Foliar application of vanillic and p-hydroxybenzoic acids enhanced drought tolerance and formation of phytoalexin momilactones in rice. Arch. Agron. Soil Sci. 64: 1831–1846.
  127. Deng, Y. et al. (2018). Exploring the mechanism and efficient use of a durable gene-mediated resistance to bacterial blight disease in rice. Mol. Breed. 38: 18.
  128. Tariq, R. et al. (2018). Comparative transcriptome profiling of rice near-isogenic line carrying Xa23 under infection of Xanthomonas oryzae pv. oryzae. Int. J. Mol. Sci. 19: 717.
  129. Tian, L. et al. (2018). Comparative analysis of the root transcriptomes of cultivated and wild rice varieties in response to Magnaporthe oryzae infection revealed both common and species-specific pathogen responses. Rice 11: 26.
  130. Toyomasu, T. et al. (2018). Characterization of diterpene synthase genes in the wild rice species Oryza brachyatha provides evolutionary insight into rice phytoalexin biosynthesis. Biochem. Biophys. Res. Commun. 503: 1221–1227.
  131. Nishiguchi, S. et al. (2018). Accumulation of 9- and 13-KODEs in response to jasmonic acid treatment and pathogenic infection in rice. J. Pestic. Sci. 43: 191–197.
  132. Zhang, Q. et al. (2018). A new phenylpropane-pimarane heterodimer and a new ent-kaurene diterpene from the husks of Oryza sativa. Phytochem. Lett. 24: 120–124.
  133. 長谷川守文 (2017). 植物の自己防御物質フィトアレキシンの多様性. 化学と生物 55: 547–552.
  134. 豊増知伸, 宮本皓司, 岡田憲典 (2017). 栽培イネのジテルペン系ファイトアレキシン生合成遺伝子とその進化. 植物の生長調節 52: 85–91.
  135. 北岡直樹 (2017). オリザレキシン生合成における酸化酵素の働き. 化学と生物 55: 585–586.
  136. Kanda, Y. et al. (2017). The receptor-like cytoplasmic kinase BSR1 mediates chitin-induced defense signaling in rice cells. Biosci. Biotechnol. Biochem. 81: 1497–1502.
  137. Zulkawi, N. et al. (2017). The in vivo hepato-recovery effects of the polyphenol-rich fermented food XenijiTM on ethanol-induced liver damage. RSC Adv. 7: 38287–38299.
  138. Yoshida, Y. et al. (2017). OsTGAP1 is responsible for JA-inducible diterpenoid phytoalexin biosynthesis in rice roots with biological impacts on allelopathic interaction. Physiol. Plant. 161: 532–544.
  139. Ogawa, S. et al. (2017). OsMYC2, an essential factor for JA-inductive sakuranetin production in rice, interacts with MYC2-like proteins that enhance its transactivation ability. Sci. Rep. 7: 40175.
  140. Ogawa, S. et al. (2017). OsMYC2 mediates numerous defence-related transcriptional changes via jasmonic acid signalling in rice. Biochem. Biophys. Res. Commun. 486: 796–803.
  141. Yang, X.-F., Kong, C.-H., Yang, X., and Li, Y.-F. (2017). Interference of allelopathic rice with penoxsulam-resistant barnyardgrass. Pest Manage. Sci. 73: 2310–2317.
  142. Alam, P. et al. (2017). Inter-species comparative antioxidant assay and HPTLC analysis of sakuranetin in the chloroform and ethanol extracts of aerial parts of Rhus retinorrhoea and Rhus tripartita. Pharm. Biol. 55: 1450–1457.
  143. Ishihara, A. et al. (2017). Induced accumulation of tyramine, serotonin, and related amines in response to Bipolaris sorokiniana infection in barley. Biosci. Biotechnol. Biochem. 81: 1090–1098.
  144. Katsumata, S., Hamana, K., Horie, K., Toshima, H., and Hasegawa, M. (2017). Identification of sternbin and naringenin as detoxified metabolites from the rice flavanone phytoalexin sakuranetin by Pyricularia oryzae. Chem. Biodiversity 14: e1600240.
  145. Guo, L. et al. (2017). Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed. Nat. Commun. 8: 1031.
  146. Xie, Y. et al. (2017). Digital gene expression profiling of the pathogen-resistance mechanism of Oryza sativa 9311 in response to Bacillus amyloliquefaciens FZB42 induction. Biol. Control 110: 89–97.
  147. Buwat, N., Hasegawa, M., and Umponstira, C. (2017). Combining effects of ozone and Xanthomonas oryzae pv. oryzae on antioxidants and phytoalexins in rice (Oryza sativa L.). Aust. J. Crop Sci. 11: 1626–1634.
  148. Ye, Z. et al. (2017). Biochemical synthesis of uniformly 13C-labeled diterpene hydrocarbons and their bioconversion to diterpenoid phytoalexins in planta. Biosci. Biotechnol. Biochem. 81: 1176–1184.
  149. Prabakaran, M., Kim, S.-H., Oh, Y.-T., Raj, V., and Chung, I.-M. (2017). Anticorrosion properties of momilactone A isolated from rice hulls. J. Ind. Eng. Chem. 45: 380–386.
  150. Aires, A., Dias, C., Carvalho, R., and Saavedra, M.J. (2017). Analysis of glycosylated flavonoids extracted from sweet-cherry stems, as antibacterial agents against pathogenic Escherichia coli isolates. Acta Biochim. Pol. 64: 265–271.
  151. Yang, C. et al. (2017). Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice. Plant J. 89: 338–353.
  152. Jia, M., Zhou, K., Tufts, S., Schulte, S., and Peters, R.J. (2017). A pair of residues that interactively affect diterpene synthase product outcome. ACS Chem. Biol. 12: 862–867.
  153. Wisecaver, J.H. et al. (2017). A global coexpression network approach for connecting genes to specialized metabolic pathways in plants. Plant Cell 29: 944–959.
  154. 加藤尚 (2016). イネの根からのアレロパシー物質モミラクトンの分泌. 根の研究 25: 5–13.
  155. Horie, K., Sakai, K., Okugi, M., Toshima, H., and Hasegawa, M. (2016). Ultraviolet-induced amides and casbene diterpenoids from rice leaves. Phytochem. Lett. 15: 57–62.
  156. Duan, L. et al. (2016). Two different transcripts of a LAMMER kinase gene play opposite roles in disease resistance. Plant Physiol. 172: 1959–1972.
  157. Fukushima, S., Mori, M., Sugano, S., and Takatsuji, H. (2016). Transcription factor WRKY62 plays a role in pathogen defence and hypoxia responsive gene expression in rice. Plant Cell Physiol. 57: 2541–2551.
  158. Zhu, X. et al. (2016). The multivesicular bodies (MVBs)-localized AAA ATPase LRD6-6 inhibits immunity and cell death likely through regulating MVBs-mediated vesicular trafficking in rice. PLoS Genet. 12: e1006311.
  159. Moselhy, S.S. et al. (2016). Spermidine, a polyamine, confers resistance to rice blast. J. Pestic. Sci. 41: 79–82.
  160. Yamashita, Y., Hanaya, K., Shoji, M., and Sugai, T. (2016). Simple synthesis of sakuranetin and selinone via a common intermediate, utilizing complementary regioselectivity in the deacetylation of naringenin triacetate. Chem. Pharm. Bull. 64: 961–965.
  161. Meyer, J., Murray, S.L., and Berger, D.K. (2016). Signals that stop the rot: Regulation of secondary metabolite defences in cereals. Physiol. Mol. Plant Pathol. 94: 156–166.
  162. Sakoda, C.P.P. et al. (2016). Sakuranetin reverses vascular peribronchial and lung parenchyma remodeling in a murine model of chronic allergic pulmonary inflammation. Acta Histochem. 118: 615–624.
  163. Kang, H., and Kim, K.-Y. (2016). Sakuranetin inhibits inflammatory enzyme, cytokine, and costimulatory molecule expression in macrophages through modulation of JNK, p38, and STAT1. Evidence-Based Complementary Altern. Med. 2016: 9824203.
  164. Drira, R., and Sakamoto, K. (2016). Sakuranetin induces melanogenesis in B16BL6 melanoma cells through inhibition of ERK and PI3K/AKT signaling pathways. Phytother. Res. 30: 997–1002.
  165. Yi, J. et al. (2016). OsMPK6 plays a critical role in cell differentiation during early embryogenesis in Oryza sativa. J. Exp. Bot. 67: 2425–2437.
  166. Neelamma, Anuradha, G.H., Sandeep, K.K., and D., S. (2016). Natural flavonoids as CDK5 inhibitors: a homology modeling and molecular docking study. Int. J. ChemTech Res. 9: 210–215.
  167. Shinya, T. et al. (2016). Modulation of plant defense responses to herbivores by simultaneous recognition of different herbivore-associated elicitors in rice. Sci. Rep. 6: 32537.
  168. Nishimura, T. et al. (2016). Magnaporthe oryzae glycine-rich secretion protein, Rbf1 critically participates in pathogenicity through the focal formation of the biotrophic interfacial complex. PLoS Pathog. 12: e1005921.
  169. Miyamoto, K. et al. (2016). Jasmonoyl-L-isoleucine is required for the production of a flavonoid phytoalexin but not diterpenoid phytoalexins in ultraviolet-irradiated rice leaves. Biosci. Biotechnol. Biochem. 80: 1934–1938.
  170. Kitaoka, N., Wu, Y., Zi, J., and Peters, R.J. (2016). Investigating inducible short-chain alcohol dehydrogenases/reductases clarifies rice oryzalexin biosynthesis. Plant J. 88: 271–279.
  171. Hu, C. et al. (2016). Identification of conserved and diverse metabolic shifts during rice grain development. Sci. Rep. 6: 20942.
  172. Okada, K. et al. (2016). HpDTC1, a stress-inducible bifunctional diterpene cyclase involved in momilactone biosynthesis, functions in chemical defence in the moss Hypnum plumaeforme. Sci. Rep. 6: 25316.
  173. Miyamoto, K. et al. (2016). Evolutionary trajectory of phytoalexin biosynthetic gene clusters in rice. Plant J. 87: 293–304.
  174. Toyomasu, T. et al. (2016). Characterization and evolutionary analysis of ent-kaurene synthase like genes from the wild rice species Oryza rufipogon. Biochem. Biophys. Res. Commun. 480: 402–408.
  175. Cruz, M.P. et al. (2016). Antinoceptive and anti-inflammatory activities of the ethanolic extract, fractions and flavones isolated from Mimosa tenuiflora (Willd.) Poir (Leguminosae). PLOS ONE 11: e0150839.
  176. Singh, B., and Sharma, R.A. (2016). Anti-inflammatory and antimicrobial effects of flavonoids from Heliotropium ellipticum exudate. Curr. Bioact. Compd. 12: 123–131.
  177. Arruda, R.L. et al. (2016). An approach on phytoalexins: function, characterization and biosynthesis in plants of the family Poaceae. Ciênc. Rural 46: 1206–1216.
  178. Tamiru, M. et al. (2016). A chloroplast-localized protein LESION AND LAMINA BENDING affects defence and growth responses in rice. New Phytol. 210: 1282–1297.
  179. Toyomasu, T. et al. (2015). Transcripts of two ent-copalyl diphosphate synthase genes differentially localize in rice plants according to their distinct biological roles. J. Exp. Bot. 66: 369–376.
  180. Tezuka, D., Ito, A., Mitsuhashi, W., Toyomasu, T., and Imai, R. (2015). The rice ent-KAURENE SYNTHASE LIKE 2 encodes a functional ent-beyerene synthase. Biochem. Biophys. Res. Commun. 460: 766–771.
  181. Kitaoka, N., Lu, X., Yang, B., and Peters, R.J. (2015). The application of synthetic biology to elucidation of plant mono-, sesqui- and diterpenoid metabolism. Mol. Plant 8: 6–16.
  182. Piasecka, A., Jedrzejczak-Rey, N., and Bednarek, P. (2015). Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. New Phytol. 206: 948–964.
  183. Cho, M.-H., and Lee, S.-W. (2015). Phenolic phytoalexins in rice: biological functions and biosynthesis. Int. J. Mol. Sci. 16: 29120–29133.
  184. Miyamoto, K. et al. (2015). Overexpression of the bZIP transcription factor OsbZIP79 suppresses the production of diterpenoid phytoalexin in rice cells. J. Plant Physiol. 173: 19–27.
  185. Kitaoka, N., Wu, Y., Xu, M., and Peters, R. (2015). Optimization of recombinant expression enables discovery of novel cytochrome P450 activity in rice diterpenoid biosynthesis. Appl. Microbiol. Biotechnol. 99: 7549–7558.
  186. Kato-Noguchi, H., and Kitajima, S. (2015). Momilactone sensitive proteins in Arabidopsis thaliana. Nat. Prod. Commun. 10: 729–732.
  187. Siciliano, I., Amaral Carneiro, G., Spadaro, D., Garibaldi, A., and Gullino, M. (2015). Jasmonic acid, abscisic acid and salicylic acid are involved in the phytoalexin responses of rice to Fusarium fujikuroi, a high gibberellin producer pathogen. J. Agric. Food Chem. 63: 8134–8142.
  188. Okada, K., Abe, H., and Arimura, G.-i. (2015). Jasmonates induce both defensive and infochemical strategies in monocotyledonous and dicotyledonous plants. Plant Cell Physiol. 56: 16–27.
  189. Klein, A.T. et al. (2015). Investigation of the chemical interface in the soybean–aphid and rice–bacteria interactions using MALDI-mass spectrometry imaging. Anal. Chem. 87: 5294–5301.
  190. Horie, K. et al. (2015). Identification of UV-induced diterpenes including a new diterpene phytoalexin, phytocassane F, from rice leaves by complementary GC/MS and LC/MS approaches. J. Agric. Food Chem. 63: 4050–4059.
  191. Hong, L., and Ying, S.-h. (2015). Ethanol extract and isolated constituents from Artemisia dracunculus inhibit esophageal squamous cell carcinoma and induce apoptotic cell death. Drug Res. 65: 101–106.
  192. Yamamura, C. et al. (2015). Diterpenoid phytoalexin factor, a bHLH transcription factor, plays a central role in the biosynthesis of diterpenoid phytoalexins in rice. Plant J. 84: 1100–1113.
  193. Cho, J.-G. et al. (2015). Diterpenes from the roots of Oryza sativa L. and their inhibition activity on NO production in LPS-stimulated RAW264.7 macrophages. Chem. Biodiversity 12: 1356–1364.
  194. Taguchi, L. et al. (2015). A flavanone from Baccharis retusa (Asteraceae) prevents elastase-induced emphysema in mice by regulating NF-κB, oxidative stress and metalloproteinases. Respir. Res. 16: 79.
  195. Akagi, A. et al. (2014). WRKY45-dependent priming of diterpenoid phytoalexin biosynthesis in rice and the role of cytokinin in triggering the reaction. Plant Mol. Biol. 86: 171–183.
  196. Li, G., Xu, Q.-L., He, C.-M., Zeng, L., and Wang, H.-F. (2014). Two new anti-fungal diterpenoids from the husks of Oryza sativa. Phytochem. Lett. 10: 309–312.
  197. Wang, Y. et al. (2014). Transcriptome analysis of early responsive genes in rice during Magnaporthe oryzae infection. Plant Pathol. J. 30: 343–354.
  198. Miyamoto, K., Shimizu, T., and Okada, K. (2014). Transcriptional regulation of the biosynthesis of phytoalexin: A lesson from specialized metabolites in rice. Plant Biotechnol. 31: 377–388.
  199. dos S. Grecco, S. et al. (2014). Structural crystalline characterization of sakuranetin – an antimicrobial flavanone from twigs of Baccharis retusa (Asteraceae). Molecules 19: 7528–7542.
  200. Ke, Y., Liu, H., Li, X., Xiao, J., and Wang, S. (2014). Rice Os_PAD4_ functions differently from Arabidopsis At_PAD4_ in host-pathogen interactions. Plant J. 78: 619–631.
  201. Goufo, P. et al. (2014). Rice (Oryza sativa L.) phenolic compounds under elevated carbon dioxide (CO2) concentration. Environ. Exp. Bot. 99: 28–37.
  202. Toyomasu, T. et al. (2014). Reverse genetic approach to verify physiological roles of rice phytoalexins: characterization of a knockdown mutant of OsCPS4 phytoalexin biosynthetic gene in rice. Physiol. Plant. 150: 55–62.
  203. Chujo, T. et al. (2014). Overexpression of phosphomimic mutated OsWRKY53 leads to enhanced blast resistance in rice. PLoS ONE 9: e98737.
  204. Wang, W., Guo, J., Zhang, J., Liu, T., and Xin, Z. (2014). New screw lactam and two new carbohydrate derivatives from the methanol extract of rice bran. J. Agric. Food Chem. 62: 10744–10751.
  205. Duan, L., Liu, H., Li, X., Xiao, J., and Wang, S. (2014). Multiple phytohormones and phytoalexins are involved in disease resistance to Magnaporthe oryzae invaded from roots in rice. Physiol. Plant. 152: 486–500.
  206. Park, C. et al. (2014). Momilactone B induces apoptosis and G1 arrest of the cell cycle in human monocytic leukemia U937 cells through downregulation of pRB phosphorylation and induction of the cyclin-dependent kinase inhibitor p21Waf1/Cip1. Oncol. Rep. 31: 1653–1660.
  207. Miyamoto, K. et al. (2014). Identification of target genes of the bZIP transcription factor OsTGAP1, whose overexpression causes elicitor-induced hyperaccumulation of diterpenoid phytoalexins in rice cells. PLoS ONE 9: e105823.
  208. Jeandet, P. et al. (2014). Deciphering the role of phytoalexins in plant-microorganism interactions and human health. Molecules 19: 18033–18056.
  209. Schmelz, E.A. et al. (2014). Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. Plant J. 79: 659–678.
  210. Park, H.L. et al. (2014). Antimicrobial activity of UV-induced phenylamides from rice leaves. Molecules 19: 18139–18151.
  211. Hasegawa, M. et al. (2014). Analysis on blast fungus-responsive characters of a flavonoid phytoalexin sakuranetin; accumulation in infected rice leaves, antifungal activity and detoxification by fungus. Molecules 19: 11404–11418.
  212. Lutz, J.A., Kulshrestha, M., Rogers, D.T., and Littleton, J.M. (2014). A nicotinic receptor-mediated anti-inflammatory effect of the flavonoid rhamnetin in BV2 microglia. Fitoterapia 98: 11–21.
  213. 菅野紘男 (2013). 昆虫の加害によって植物に蓄積される植物ホルモンとフィトアレキシン. 化学と生物 51: 364–367.
  214. Yokotani, N. et al. (2013). WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. J. Exp. Bot. 64: 5085–5097.
  215. Park, H.L., Lee, S.-W., Jung, K.-H., Hahn, T.-R., and Cho, M.-H. (2013). Transcriptomic analysis of UV-treated rice leaves reveals UV-induced phytoalexin biosynthetic pathways and their regulatory networks in rice. Phytochemistry 96: 57–71.
  216. Kato-Noguchi, H., and Peters, R.J. (2013). The role of momilactones in rice allelopathy. J. Chem. Ecol. 39: 175–185.
  217. Kato-Noguchi, H., and Ino, T. (2013). The chemical-mediated allelopathic interaction between rice and barnyard grass. Plant Soil 370: 267–275.
  218. Friedman, M. (2013). Rice brans, rice bran oils, and rice hulls: composition, food and industrial uses, and bioactivities in humans, animals, and cells. J. Agric. Food Chem. 61: 10626–10641.
  219. Wu, Y., Wang, Q., Hillwig, M.L., and Peters, R.J. (2013). Picking sides: distinct roles for CYP76M6 and CYP76M8 in rice oryzalexin biosynthesis. Biochem. J. 454: 209–216.
  220. Ejike, C.E.C.C., Gong, M., and Udenigwe, C.C. (2013). Phytoalexins from the Poaceae: biosynthesis, function and prospects in food preservation. Food Res. Int. 52: 167–177.
  221. Shimizu, T. et al. (2013). OsJAR1 contributes mainly to biosynthesis of the stress-induced jasmonoyl-isoleucine involved in defense responses in rice. Biosci. Biotechnol. Biochem. 77: 1556–1564.
  222. Li, W. et al. (2013). Oscyp71Z2 involves diterpenoid phytoalexin biosynthesis that contributes to bacterial blight resistance in rice. Plant Sci. 207: 98–107.
  223. Jeandet, P., Clément, C., Courot, E., and Cordelier, S. (2013). Modulation of phytoalexin biosynthesis in engineered plants for disease resistance. Int. J. Mol. Sci. 14: 14136–14170.
  224. Balmer, D., Flors, V.Ì., Glauser, G., and Mauch-Mani, B. (2013). Metabolomics of cereals under biotic stress: current knowledge and techniques. Front. Plant Sci. 4: 82.
  225. Wankhede, D., Kumar, K., Singh, P., and Sinha, A. (2013). Involvement of Mitogen activated protein Kinase Kinase 6 in UV induced transcripts accumulation of genes in phytoalexin biosynthesis in rice. Rice 6: 35.
  226. Riemann, M. et al. (2013). Identification of rice Allene Oxide Cyclase mutants and the function of jasmonate for defence against Magnaporthe oryzae. Plant J. 74: 226–238.
  227. Inoue, Y. et al. (2013). Identification of a novel casbane-type diterpene phytoalexin, ent-10-oxodepressin, from rice leaves. Biosci. Biotechnol. Biochem. 77: 760–765.
  228. Toledo, A.C. et al. (2013). Flavonone treatment reverses airway inflammation and remodelling in an asthma murine model. Br. J. Pharmacol. 168: 1736–1749.
  229. Kato-Noguchi, H., Ota, K., Kujime, H., and Ogawa, M. (2013). Effects of momilactone on the protein expression in Arabidopsis germination. Weed Biol. Manage. 13: 19–23.
  230. Park, J.-H., Fu, Y.-Y., Chung, I., Hahn, T.-R., and Cho, M.-H. (2013). Cytotoxic property of ultraviolet-induced rice phytoalexins to human colon carcinoma HCT-116 cells. J. Korean Soc. Appl. Biol. Chem. 56: 237–241.
  231. Yamane, H. (2013). Biosynthesis of phytoalexins and regulatory mechanisms of it in rice. Biosci. Biotechnol. Biochem. 77: 1141–1148.
  232. Kato-Noguchi, H., and Ota, K. (2013). Biological activities of rice allelochemicals momilactone A and B. J. Rice Res. 1: 108.
  233. Georgiev, L. et al. (2012). Radical scavenging and antimicrobial activities of cinnamoyl amides of biogenic monoamines. Riv. Ital. Sostanze Grasse 89: 91–102.
  234. Shimizu, T. et al. (2012). The potential bioproduction of the pharmaceutical agent sakuranetin, a flavonoid phytoalexin in rice. Bioengineered 3: 352–357.
  235. Kawahara, Y. et al. (2012). Simultaneous RNA-seq analysis of a mixed transcriptome of rice and blast fungus interaction. PLoS ONE 7: e49423.
  236. Hamada, H. et al. (2012). Regulation of a proteinaceous elicitor-induced Ca2+ influx and production of phytoalexins by a putative voltage-gated cation channel, OsTPC1, in cultured rice cells. J. Biol. Chem. 287: 9931–9939.
  237. Mennan, H., Ngouajio, M., Sahin, M., Isik, D., and Altop, E.K. (2012). Quantification of momilactone B in rice hulls and the phytotoxic potential of rice extracts on the seed germination of Alisma plantago-aquatica. Weed Biol. Manage. 12: 29–39.
  238. Shimizu, T. et al. (2012). Purification and identification of naringenin 7-_O_-methyltransferase, a key enzyme in the biosynthesis of the flavonoid phytoalexin sakuranetin in rice. J. Biol. Chem. 287: 19315–19325.
  239. Ahuja, I., Kissen, R., and Bones, A.M. (2012). Phytoalexins in defense against pathogens. Trends Plant Sci. 17: 73–90.
  240. Romagnolo, D.F., Davis, C.D., and Milner, J.A. (2012). Phytoalexins in cancer prevention. Front. Biosci. 17: 2035–2058.
  241. Lee, J. et al. (2012). Momilactione B inhibits protein kinase A signaling and reduces tyrosinase-related proteins 1 and 2 expression in melanocytes. Biotechnol. Lett. 34: 805–812.
  242. Li, H., Goodwin, P., Han, Q., Huang, L., and Kang, Z. (2012). Microscopy and proteomic analysis of the non-host resistance of Oryza sativa to the wheat leaf rust fungus, Puccinia triticina f. sp. tritici. Plant Cell Rep. 31: 637–650.
  243. Grecco, S.D.S. et al. (2012). In vitro antileishmanial and antitrypanosomal activities of flavanones from Baccharis retusa DC. (Asteraceae). Exp. Parasitol. 130: 141–145.
  244. Imai, T. et al. (2012). Identification of a degradation intermediate of the momilactone A rice phytoalexin by the rice blast fungus. Biosci. Biotechnol. Biochem. 76: 414–416.
  245. Xu, M. et al. (2012). Genetic evidence for natural product-mediated plant–plant allelopathy in rice (Oryza sativa). New Phytol. 193: 570–575.
  246. Li, W. et al. (2012). Ectopic expression of hrf1 enhances bacterial resistance via regulation of diterpene phytoalexins, silicon and reactive oxygen species burst in rice. PLoS ONE 7: e43914.
  247. Wang, Q., Hillwig, M.L., Wu, Y., and Peters, R.J. (2012). CYP701A8: A rice ent-kaurene oxidase paralog diverted to more specialized diterpenoid metabolism. Plant Physiol. 158: 1418–1425.
  248. Bagnaresi, P. et al. (2012). Comparative transcriptome profiling of the early response to Magnaporthe oryzae in durable resistant vs susceptible rice (Oryza sativa L.) genotypes. PLoS ONE 7: e51609.
  249. Wang, Q. et al. (2012). Characterization of CYP76M5-8 indicates metabolic plasticity within a plant biosynthetic gene cluster. J. Biol. Chem. 287: 6159–6168.
  250. Kanno, H., Hasegawa, M., and Kodama, O. (2012). Accumulation of salicylic acid, jasmonic acid and phytoalexins in rice, Oryza sativa, infested by the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). Appl Entomol. Zool. 47: 27–34.
  251. Kato-Noguchi, H., Ota, K., and Kujime, H. (2012). Absorption of momilactone A and B by Arabidopsis thaliana L. and the growth inhibitory effects. J. Plant Physiol. 169: 1471–1476.
  252. Liu, H., Li, X., Xiao, J., and Wang, S. (2012). A convenient method for simultaneous quantification of multiple phytohormones and metabolites: application in study of rice-bacterium interaction. Plant Methods 8: 2.
  253. Kato-Noguchi, H. (2011). The chemical cross talk between rice and barnyardgrass. Plant Signaling Behav. 6: 1207–1209.
  254. Okada, K. (2011). The biosynthesis of isoprenoids and the mechanisms regulating it in plants. Biosci. Biotechnol. Biochem. 75: 1219–1225.
  255. Yajima, A. et al. (2011). Stereocontrolled total synthesis of (±)-3β-hydroxy-9β-pimara-7,15-diene, a putative biosynthetic intermediate of momilactones. Tetrahedron Lett. 52: 3212–3215.
  256. Eisenman, S.W., Poulev, A., Struwe, L., Raskin, I., and Ribnicky, D.M. (2011). Qualitative variation of anti-diabetic compounds in different tarragon (Artemisia dracunculus L.) cytotypes. Fitoterapia 82: 1062–1074.
  257. Wu, Y., Hillwig, M.L., Wang, Q., and Peters, R.J. (2011). Parsing a multifunctional biosynthetic gene cluster from rice: Biochemical characterization of CYP71Z6 & 7. FEBS Lett. 585: 3446–3451.
  258. Fletcher, J.N. et al. (2011). In vitro evaluation of flavonoids from Eriodictyon californicum for antagonist activity against the bitterness receptor hTAS2R31. J. Agric. Food Chem. 59: 13117–13121.
  259. Chu, H.Y., Wegel, E., and Osbourn, A. (2011). From hormones to secondary metabolism: the emergence of metabolic gene clusters in plants. Plant J. 66: 66–79.
  260. Wang, Q., Hillwig, M.L., and Peters, R.J. (2011). CYP99A3: Functional identification of a diterpene oxidase from the momilactone biosynthetic gene cluster in rice. Plant J. 65: 87–95.
  261. Seo, S. et al. (2011). Cyanide, a co-product of plant hormone ethylene biosynthesis, contributes to the resistance of rice to blast fungus. Plant Physiol. 155: 502–514.
  262. Kato-Noguchi, H. (2011). Convergent or parallel molecular evolution of momilactone A and B: Potent allelochemicals, momilactones have been found only in rice and the moss Hypnum plumaeforme. J. Plant Physiol. 168: 1511–1516.
  263. Kato-Noguchi, H. (2011). Barnyard grass-induced rice allelopathy and momilactone B. J. Plant Physiol. 168: 1016–1020.
  264. Shimizu, T. et al. (2010). Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 64: 204–214.
  265. Kato-Noguchi, H., Ino, T., and Kujime, H. (2010). The relation between growth inhibition and secretion level of momilactone B from rice root. J. Plant Interact. 5: 87–90.
  266. Qiao, Y. et al. (2010). SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit µ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol. 185: 258–274.
  267. Kurusu, T. et al. (2010). Regulation of microbe-associated molecular pattern-induced hypersensitive cell death, phytoalexin production and defense gene expression by calcineurin B-like protein-interacting protein kinases, OsCIPK14/15, in rice cultured cells. Plant Physiol. 153: 678–692.
  268. Hasegawa, M. et al. (2010). Phytoalexin accumulation in the interaction between rice and the blast fungus. Mol. Plant-Microbe Interact. 23: 1000–1011.
  269. Kishi-Kaboshi, M., Takahashi, A., and Hirochika, H. (2010). MAMP-responsive MAPK cascades regulate phytoalexin biosynthesis. Plant Signaling Behav. 5: 1653–1656.
  270. Ko, K.-W. et al. (2010). Effects of cytokinin on production of diterpenoid phytoalexins in rice. J. Pestic. Sci. 35: 412–418.
  271. Kato-Noguchi, H., Hasegawa, M., Ino, T., Ota, K., and Kujime, H. (2010). Contribution of momilactone A and B to rice allelopathy. J. Plant Physiol. 167: 787–791.
  272. Kishi-Kaboshi, M. et al. (2010). A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. Plant J. 63: 599–612.
  273. 岡田憲典 (2009). イネのファイトアレキシン生合成遺伝子クラスター. 化学と生物 47: 43–50.
  274. Kato-Noguchi, H. (2009). Stress-induced allelopathic activity and momilactone B in rice. Plant Growth Regul. 59: 153–158.
  275. Kim, J.-A. et al. (2009). Rice OsACDR1 (Oryza sativa accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance. Mol. Cells 28: 431–439.
  276. Okada, A. et al. (2009). OsTGAP1, a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice. J. Biol. Chem. 284: 26510–26518.
  277. Kato-Noguchi, H., and Kobayashi, K. (2009). Jasmonic acid, protein phosphatase inhibitor, metals and UV-irradiation increased momilactone A and B concentrations in the moss Hypnum plumaeforme. J. Plant Physiol. 166: 1118–1122.
  278. Kato, T. et al. (2009). Differential responses of rice to inoculation with wild-type and non-pathogenic mutants of Magnaporthe oryzae. Plant Mol. Biol. 70: 617–625.
  279. Swaminathan, S., Morrone, D., Wang, Q., Fulton, D.B., and Peters, R.J. (2009). CYP76M7 is an ent-cassadiene C11α-hydroxylase defining a second multifunctional diterpenoid biosynthetic gene cluster in rice. Plant Cell 21: 3315–3325.
  280. Kato-Noguchi, H., Kobayashi, K., and Shigemori, H. (2009). Allelopathy of the moss Hypnum plumaeforme by the production of momilactone A and B. Weed Res. 49: 621–627.
  281. Zhang, L. et al. (2008). Three flavonoids targeting the β-hydroxyacyl-acyl carrier protein dehydratase from Helicobacter pylori: crystal structure characterization with enzymatic inhibition assay. Protein Sci. 17: 1971–1978.
  282. Ishihara, A. et al. (2008). The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. Plant J. 54: 481–495.
  283. Takemoto, J.K., Remsberg, C.M., Yáñez, J.A., Vega-Villa, K.R., and Davies, N.M. (2008). Stereospecific analysis of sakuranetin by high-performance liquid chromatography: Pharmacokinetic and botanical applications. J. Chromatogr. B 875: 136–141.
  284. Saito, T., Abe, D., and Sekiya, K. (2008). Sakuranetin induces adipogenesis of 3T3-L1 cells through enhanced expression of PPARγ2. Biochem. Biophys. Res. Commun. 372: 835–839.
  285. Toyomasu, T. (2008). Recent advances regarding diterpene cyclase genes in higher plants and fungi. Biosci. Biotechnol. Biochem. 72: 1168–1175.
  286. Lin, Y.-Z. et al. (2008). Proteomic analysis of rice defense response induced by probenazole. Phytochemistry 69: 715–728.
  287. Lee, S.C. et al. (2008). Momilactone B, an allelochemical of rice hulls, induces apoptosis on human lymphoma cells (Jurkat) in a micromolar concentration. Nutr. Cancer 60: 542–551.
  288. Cho, K. et al. (2008). Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. J. Proteome Res. 7: 2980–2998.
  289. Joung, Y.-H. et al. (2008). Enhancement of hypoxia-induced apoptosis of human breast cancer cells via STAT5b by momilactone B. Int. J. Oncol. 33: 477–484.
  290. Shimizu, T. et al. (2008). Effects of a bile acid elicitor, cholic acid, on the biosynthesis of diterpenoid phytoalexins in suspension-cultured rice cells. Phytochemistry 69: 973–981.
  291. Toyomasu, T. et al. (2008). Diterpene phytoalexins are biosynthesized in and exuded from the roots of rice seedlings. Biosci. Biotechnol. Biochem. 72: 562–567.
  292. Hayashi, Y. et al. (2008). Comparison of the enzymatic properties of ent-copalyl diphosphate synthases in the biosynthesis of phytoalexins and gibberellins in rice. Biosci. Biotechnol. Biochem. 72: 523–530.
  293. 古賀仁一郎 (2007). 胆汁酸やスフィンゴ脂質によるイネの病害抵抗性誘導. バイオサイエンスとインダストリー 65: 228–231.
  294. 山根久和, 豊増知伸, and 佐々武史 (2007). ファイトアレキシン生合成とその制御. 蛋白質 核酸 酵素 52: 648–653.
  295. 豊増知伸 (2007). イネのジテルペン環化酵素遺伝子ファミリー. 化学と生物 45: 851–856.
  296. Nozaki, H. et al. (2007). Momilactone A and B as allelochemicals from moss Hypnum plumaeforme: first occurrence in bryophytes. Biosci. Biotechnol. Biochem. 71: 3127–3130.
  297. Mori, M. et al. (2007). Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol. Biol. 63: 847–860.
  298. Shimura, K. et al. (2007). Identification of a biosynthetic gene cluster in rice for momilactones. J. Biol. Chem. 282: 34013–34018.
  299. Xu, M. et al. (2007). Functional characterization of the rice kaurene synthase-like gene family. Phytochemistry 68: 312–326.
  300. Okada, A. et al. (2007). Elicitor induced activation of the methylerythritol phosphate pathway toward phytoalexins biosynthesis in rice. Plant Mol. Biol. 65: 177–187.
  301. Hernández, V., Recio, M.C., Máñez, S., Giner, R.M., and Ríos, J.-L. (2007). Effects of naturally occurring dihydroflavonols from Inula viscosa on inflammation and enzymes involved in the arachidonic acid metabolism. Life Sci. 81: 480–488.
  302. Kim, S.-J., Park, H.-R., Park, E., and Lee, S.-C. (2007). Cytotoxic and antitumor activity of momilactone B from rice hulls. J. Agric. Food Chem. 55: 1702–1706.
  303. Fukuta, M. et al. (2007). Comparative efficacies in vitro of antibacterial, fungicidal, antioxidant, and herbicidal activities of momilatones A and B. J. Plant Interact. 2: 245–251.
  304. Ogawa, Y., Oku, H., Iwaoka, E., Iinuma, M., and Ishiguro, K. (2007). Allergy-preventive flavonoids from Xanthorrhoea hastilis. Chem. Pharm. Bull. 55: 675–678.
  305. Macías, F.A., Molinillo, J.M.G., Varela, R.M., and Galindo, J.C.G. (2007). Allelopathy – a natural alternative for weed control. Pest Manage. Sci. 63: 327–348.
  306. Peters, R.J. (2006). Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynthesis in rice and other cereal crop plants. Phytochemistry 67: 2307–2317.
  307. Jwa, N.-S. et al. (2006). Role of defense/stress-related marker genes, proteins and secondary metabolites in defining rice self-defense mechanisms. Plant Physiol. Biochem. 44: 261–273.
  308. Chung, I.M., Kim, J.T., and Kim, S.-H. (2006). Evaluation of allelopathic potential and quantification of momilactone A,B from rice hull extracts and assessment of inhibitory bioactivity on paddy field weeds. J. Agric. Food Chem. 54: 2527–2536.
  309. Lin, F. et al. (2006). Cloning and functional analysis of caffeic acid 3-_O-methyltransferase from rice (Oryza sativa_). J. Pestic. Sci. 31: 47–53.
  310. Koga, J. et al. (2006). Cholic Acid, a bile acid elicitor of hypersensitive cell death, pathogenesis-related protein synthesis, and phytoalexin accumulation in rice. Plant Physiol. 140: 1475–1483.
  311. Kanno, Y. et al. (2006). Characterization of a rice gene family encoding type-A diterpene cyclases. Biosci. Biotechnol. Biochem. 70: 1702–1710.
  312. Zhang, X. et al. (2006). Anti-inflammatory activity of flavonoids from Populus davidiana. Arch. Pharmacal Res. 29: 1102–1108.
  313. Morrone, D. et al. (2006). An unexpected diterpene cyclase from rice: Functional identification of a stemodene synthase. Arch. Biochem. Biophys. 448: 133–140.
  314. Jung, Y.-H. et al. (2005). The rice (Oryza sativa) Blast Lesion Mimic mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiol. Biochem. 43: 397–406.
  315. Yamaguchi, T., Minami, E., Ueki, J., and Shibuya, N. (2005). Elicitor-induced activation of phospholipases plays an important role for the induction of defense responses in suspension-cultured rice cells. Plant Cell Physiol. 46: 579–587.
  316. Chung, I.-M., Hahn, S.-J., and Ahmad, A. (2005). Confirmation of potential herbicidal agents in hulls of rice, Oryza sativa. J. Chem. Ecol. 31: 1339–1352.
  317. Yajima, A., Mori, K., and Yabuta, G. (2004). Total synthesis of ent-cassa-12,15-diene, a putative precursor of rice phytoalexins, phytocassanes A-E. Tetrahedron Lett. 45: 167–169.
  318. Nemoto, T. et al. (2004). Stemar-13-ene synthase, a diterpene cyclase involved in the biosynthesis of the phytoalexin oryzalexin S in rice. FEBS Lett. 571: 182–186.
  319. Rodrigues, F.Á. et al. (2004). Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology 94: 177–183.
  320. Prisic, S., Xu, M., Wilderman, P.R., and Peters, R.J. (2004). Rice contains two disparate ent-copalyl diphosphate synthases with distinct metabolic functions. Plant Physiol. 136: 4228–4236.
  321. Kong, C. et al. (2004). Release and activity of allelochemicals from allelopathic rice seedlings. J. Agric. Food Chem. 52: 2861–2865.
  322. Jikumaru, Y. et al. (2004). Preparation and biological activity of molecular probes to identify and analyze jasmonic acid-binding proteins. Biosci. Biotechnol. Biochem. 68: 1461–1466.
  323. Cho, E.-M. et al. (2004). Molecular cloning and characterization of a cDNA encoding ent-cassa-12,15-diene synthase, a putative diterpenoid phytoalexin biosynthetic enzyme, from suspension-cultured rice cells treated with a chitin elicitor. Plant J. 37: 1–8.
  324. Wilderman, P.R., Xu, M., Jin, Y., Coates, R.M., and Peters, R.J. (2004). Identification of syn-pimara-7,15-diene synthase reveals functional clustering of terpene synthases involved in rice phytoalexin/allelochemical biosynthesis. Plant Physiol. 135: 2098–2105.
  325. Xu, M., Hillwig, M.L., Prisic, S., Coates, R.M., and Peters, R.J. (2004). Functional identification of rice syn-copalyl diphosphate synthase and its role in initiating biosynthesis of diterpenoid phytoalexin/allelopathic natural products. Plant J. 39: 309–318.
  326. Sawada, K. et al. (2004). Enhanced resistance to blast fungus and bacterial blight in transgenic rice constitutively expressing OsSBP, a rice homologue of mammalian selenium-binding proteins. Biosci. Biotechnol. Biochem. 68: 873–880.
  327. Otomo, K. et al. (2004). Diterpene cyclases responsible for the biosynthesis of phytoalexins, momilactones A, B, and oryzalexins A-F in rice. Biosci. Biotechnol. Biochem. 68: 2001–2006.
  328. Otomo, K. et al. (2004). Biological functions of ent- and syn-copalyl diphosphate synthases in rice: key enzymes for the branch point of gibberellin and phytoalexin biosynthesis. Plant J. 39: 886–893.
  329. Sakamoto, T. et al. (2004). An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol. 134: 1642–1653.
  330. Yamaguchi, T., Tanabe, S., Minami, E., and Shibuya, N. (2004). Activation of phospholipase D Induced by hydrogen peroxide in suspension-cultured rice cells. Plant Cell Physiol. 45: 1261–1270.
  331. Kato-Noguchi, H., and Ino, T. (2003). Rice seedlings release momilactone B into the environment. Phytochemistry 63: 551–554.
  332. Umemura, K. et al. (2003). Possible role of phytocassane, rice phytoalexin, in disease resistance of rice against the blast fungus Magnaporthe grisea. Biosci. Biotechnol. Biochem. 67: 899–902.
  333. Rakwal, R. et al. (2003). Novel insight into kinetin-inducible stress responses in rice seedlings. Plant Physiol. Biochem. 41: 453–457.
  334. Rakwal, R. et al. (2003). Defense/stress responses elicited in rice seedlings exposed to the gaseous air pollutant sulfur dioxide. Environ. Exp. Bot. 49: 223–235.
  335. Sobajima, H. et al. (2003). Cloning and characterization of a jasmonic acid-responsive gene encoding 12-oxophytodienoic acid reductase in suspension-cultured rice cells. Planta 216: 692–698.
  336. Kato-Noguchi, H., Ino, T., and Ichii, M. (2003). Changes in release level of momilactone B into the environment from rice throughout its life cycle. Funct. Plant Biol. 30: 995–997.
  337. Miyazawa, M., Kinoshita, H., and Okuno, Y. (2003). Antimutagenic activity of sakuranetin from Prunus jamasakura. J. Food Sci. 68: 52–56.
  338. Yamaguchi, T. et al. (2002). Two purified oligosaccharide elicitors, N-acetylchitohepatose and tetraglucosyl glucitol, derived from Magnaporthe grisea cell walls, synergistically activate biosynthesis of phytoalexin in suspension-cultured rice cells. J. Plant Physiol. 159: 1147–1149.
  339. Germain, J., and Deslongchamps, P. (2002). Total synthesis of (±)-momilactone A. J. Org. Chem. 67: 5269–5278.
  340. Kato-Noguchi, H., Ino, T., Sata, N., and Yamamura, S. (2002). Isolation and identification of a potent allelopathic substance in rice root exudates. Physiol. Plant. 115: 401–405.
  341. Obara, N., Hasegawa, M., and Kodama, O. (2002). Induced volatiles in elicitor-treated and rice blast fungus-inoculated rice leaves. Biosci. Biotechnol. Biochem. 66: 2549–2559.
  342. Umemura, K., Ogawa, N., Koga, J., Iwata, M., and Usami, H. (2002). Elicitor activity of cerebroside, a sphingolipid elicitor, in cell suspension cultures of rice. Plant Cell Physiol. 43: 778–784.
  343. Agrawal, G.K. et al. (2002). Chitosan activates defense/stress response(s) in the leaves of Oryza sativa seedlings. Plant Physiol. Biochem. 40: 1061–1069.
  344. Atawong, A., Hasegawa, M., and Kodama, O. (2002). Biosynthesis of rice phytoalexin: enzymatic conversion of 3β-hydroxy-9β-pimara-7,15-dien-19,6β-olide to momilactone A. Biosci. Biotechnol. Biochem. 66: 566–570.
  345. Rakwal, R., Shii, K., Agrawal, G.K., and Yonekura, M. (2001). Protein phosphatase inhibitors activate defense responses in rice (Oryza sativa) leaves. Physiol. Plant. 111: 151–157.
  346. Ono, E. et al. (2001). Essential role of the small GTPase Rac in disease resistance of rice. Proc. Natl. Acad. Sci. U. S. A. 98: 759–764.
  347. Rakwal, R., Agrawal, G.K., Yonekura, M., and Kodama, O. (2000). Naringenin 7-_O-methyltransferase involved in the biosynthesis of the flavanone phytoalexin sakuranetin from rice (Oryza sativa_ L.). Plant Sci. 155: 213–221.
  348. Nakazato, Y., Tamogami, S., Kawai, H., Hasegawa, M., and Kodama, O. (2000). Methionine-induced phytoalexin production in rice leaves. Biosci. Biotechnol. Biochem. 64: 577–583.
  349. Yajima, A., and Mori, K. (2000). Diterpenoid total synthesis, XXXII Synthesis and absolute configuration of (-)-phytocassane D, a diterpene phytoalexin isolated from the rice plant, Oryza sativa. Eur. J. Org. Chem. 24: 4079–4091.
  350. Yamaguchi, T. et al. (2000). Differences in the recognition of glucan elicitor signals between rice and soybean: beta-glucan fragments from the rice blast disease fungus Pyricularia oryzae that elicit phytoalexin biosynthesis in suspension-cultured rice cells. Plant Cell 12: 817–826.
  351. Tamogami, S., and Kodama, O. (2000). Coronatine elicits phytoalexin production in rice leaves (Oryza sativa L.) in the same manner as jasmonic acid. Phytochemistry 54: 689–694.
  352. Umemura, K. et al. (2000). Cerebroside elicitors found in diverse phytopathogens activate defense responses in rice plants. Plant Cell Physiol. 41: 676–683.
  353. Harborne, J.B., and Williams, C.A. (2000). Advances in flavonoid research since 1992. Phytochemistry 55: 481–504.
  354. Yajima, A., and Mori, K. (2000). Absolute configuration of phytocassanes as proposed on the basis of the CD spectrum of synthetic (+)-2-deoxyphytocassane A. Tetrahedron Lett. 41: 351–354.
  355. Takii, T. et al. (1999). Serotonin derivative, N-(p-coumaroyl)serotonin, isolated from safflower (Carthamus tinctorius L.) oil cake augments the proliferation of normal human and mouse fibroblasts in synergy with basic fibroblast growth factor (bFGF) or epidermal growth factor (EGF)1. J. Biochem. 125: 910–915.
  356. Harborne, J.B. (1999). Recent advances in chemical ecology. Nat. Prod. Rep. 16: 509–523.
  357. Lee, C.W. et al. (1999). Momilactones A and B in rice straw harvested at different growth stages. Biosci. Biotechnol. Biochem. 63: 1318–1320.
  358. Takahashi, A. et al. (1999). Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant J. 17: 535–545.
  359. Araki, Y., and Kurahashi, Y. (1999). Enhancement of phytoalexin synthesis during rice blast infection of leaves by pre-treatment with carpropamid. J. Pestic. Sci. 24: 369–374.
  360. Koga, J. et al. (1998). Cerebrosides A and C, sphingolipid elicitors of hypersensitive cell death and phytoalexin accumulation in rice plants. J. Biol. Chem. 273: 31985–31991.
  361. Zhang, H.L., Nagatsu, A., Watanabe, T., Sakakibara, J., and Okuyama, H. (1997). Antioxidative compounds isolated from safflower (Carthamus tinctorius L.) oil cake. Chem. Pharm. Bull. 45: 1910–1914.
  362. Tamogami, S., Rakwal, R., and Kodama, O. (1997). Phytoalexin production of amino acid conjugates of jasmonic acid through induction of naringenin 7-_O-methyltransferase, a key enzyme on phytoalexin biosynthesis in rice (Oryza sativa_ L.). FEBS Lett. 401: 239–242.
  363. Tamogami, S., Rakwal, R., and Kodama, O. (1997). Phytoalexin production elicited by exogenously applied jasmonic acid in rice leaves (Oryza sativa L.) is under the control of cytokinins and ascorbic acid. FEBS Lett. 412: 61–64.
  364. Koga, J. et al. (1997). Functional moiety for the antifungal activity of phytocassane E, a diterpene phytoalexin from rice. Phytochemistry 44: 249–253.
  365. Padmavati, M., Sakthivel, N., Thara, K.V., and Reddy, A.R. (1997). Differential sensitivity of rice pathogens to growth inhibition by flavonoids. Phytochemistry 46: 499–502.
  366. Dillon, V.M., Overton, J., Grayer, R.J., and Harborne, J.B. (1997). Differences in phytoalexin response among rice cultivars of different resistance to blast. Phytochemistry 44: 599–603.
  367. Plowright, R.A., Grayer, R.J., Gill, J.R., Rahman, M.L., and Harborne, J.B. (1996). The induction of phenolic compounds in rice after infection by the stem nematode Ditylenchus angustus. Nematologica 42: 564–578.
  368. Aida, Y., Tamogami, S., Kodama, O., and Tsukiboshi, T. (1996). Synthesis of 7-methoxyapigeninidin and its fungicidal activity against Gloeocercospora sorghi. Biosci. Biotechnol. Biochem. 60: 1495–1496.
  369. Rakwal, R., Tamogami, S., and Kodama, O. (1996). Role of jasmonic acid as a signal molecule in copper chloride-elicited rice phytoalexin production. Biosci. Biotechnol. Biochem. 60: 1046–1048.
  370. Arase, S., Yoshiura, Y., Ozoe, Y., Honda, Y., and Nozu, M. (1996). Production of a phytoalexin, sakuranetin, in the Sekiguchi lesion on rice cv. Sekiguchi-asahi. Ann. Phytopathol. Soc. Jpn. 62: 408–410.
  371. Nojiri, H. et al. (1996). Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells. Plant Physiol. 110: 387–392.
  372. Kodama, O. (1996). Biochemical studies of rice phytoalexins. Mycotoxins 42: 7–11.
  373. Rakwal, R., Hasegawa, M., and Kodama, O. (1996). A methyltransferase for synthesis of the flavanone phytoalexin sakuranetin in rice leaves. Biochem. Biophys. Res. Commun. 222: 732–735.
  374. Tamogami, S., Kodama, O., Hirose, K., and Akatsuka, T. (1995). Pretilachlor [2-chloro-N-(2,6-diethylphenyl-N-(2-propoxyethyl)acetamide]- and butachlor [N-butoxymethyl-2-chloro-N-(2,6-diethylphenyl-N-(2-propoxyethyl)acetamide]-induced accumulation of phytoalexin in rice (Oryza sativa) plants. J. Agric. Food Chem. 43: 1695–1697.
  375. Koga, J. et al. (1995). Phytocassanes A, B, C and D, novel diterpene phytoalexins from rice, Oryza sativa L. Tetrahedron 51: 7907–7918.
  376. Kato, H., Kodama, O., and Akatsuka, T. (1995). Characterization of an inducible P450 hydroxylase involved in the rice diterpene phytoalexin biosynthetic pathway. Arch. Biochem. Biophys. 316: 707–712.
  377. Kato, H., Kodama, O., and Akatsuka, T. (1994). Oryzalexin F, a diterpene phytoalexin from UV-irradiated rice leaves. Phytochemistry 36: 299–301.
  378. 赤塚尹巳 (1993). イネのファイトアレキシン. 植物の化学調節 28: 145–153.
  379. Tamogami, S., Mitani, M., Kodama, O., and Akatsuka, T. (1993). Oryzalexin S structure: a new stemarane-type rice plant phytoalexin and its biogenesis. Tetrahedron 49: 2025–2032.
  380. Kato, H., Kodama, O., and Akatsuka, T. (1993). Oryzalexin E, a diterpene phytoalexin from UV-irradiated rice leaves. Phytochemistry 33: 79–81.
  381. Yamada, A., Shibuya, N., Kodama, O., and Akatsuka, T. (1993). Induction of phytoalexin formation in suspension-cultured rice cells by N-acetylchitooligosaccharides. Biosci. Biotechnol. Biochem. 57: 405–409.
  382. Kodama, O., Miyakawa, J., Akatsuka, T., and Kiyosawa, S. (1992). Sakuranetin, a flavanone phytoalexin from ultraviolet-irradiated rice leaves. Phytochemistry 31: 3807–3809.
  383. Chu, M., and Coates, R.M. (1992). Partial synthesis of 9,10-syn diterpenes via tosylhydrazone reduction: (-)- (9β)-pimara-7,15-diene and (-)- (9β)-isopimaradiene. J. Org. Chem. 57: 4590–4597.
  384. Kodama, O., Li, W.X., Tamogami, S., and Akatsuka, T. (1992). Oryzalexin S, a novel stemarane-type diterpene rice phytoalexin. Biosci. Biotechnol. Biochem. 56: 1002–1003.
  385. Ren, Y., and West, C.A. (1992). Elicitation of diterpene biosynthesis in rice (Oryza sativa L.) by chitin. Plant Physiol. 99: 1169–1178.
  386. Wickham, K.A., and West, C.A. (1992). Biosynthesis of rice phytoalexins: Identification of putative diterpene hydrocarbon precursors. Arch. Biochem. Biophys. 293: 320–332.
  387. Li, W.X., Kodama, O., and Akatsuka, T. (1991). Role of oxygenated fatty acids in rice phytoalexin production. Agric. Biol. Chem. 55: 1041–1047.
  388. Iwakuma, T., Ataka, Y., Matsuyama, N., and Wakimoto, S. (1990). Phytoalexin production elicited by Pyricularia oryzae infection and its hyphal wall-component treatment in rice leaves. Ann. Phytopathol. Soc. Jpn. 56: 665–670.
  389. Kodama, O., Suzuki, T., Miyakawa, J., and Akatsuka, T. (1988). Ultraviolet-induced accumulation of phytoalexins in rice leaves. Agric. Biol. Chem. 52: 2469–2473.
  390. Matsuyama, N., and Wakimoto, S. (1988). Isolation and identification of diterpenoid anti-blast substances produced in the blast-infected rice leaves. Ann. Phytopathol. Soc. Jpn. 54: 183–188.
  391. Kodama, O., Yamada, A., Yamamoto, A., Takemoto, T., and Akatsuka, T. (1988). Induction of phytoalexins with heavy metal ions in rice leaves. J. Pestic. Sci. 13: 615–617.
  392. Matsuyama, N., and Wakimoto, S. (1987). The production of anti-blast substances in blast-infected and UV-irradiated rice leaves. Ann. Phytopathol. Soc. Jpn. 53: 449–453.
  393. Sekido, H. et al. (1987). Qualitative and semiquantitative analysis of oryzalexins in blast- or brown spot-diseased rice leaves by mass chromatography. J. Pestic. Sci. 12: 739–740.
  394. Sekido, H., and Akatsuka, T. (1987). Mode of action of oryzalexin D against Pyricularia oryzae. Agric. Biol. Chem. 51: 1967–1971.
  395. Sekido, H., Kamada, K., Kodama, O., and Akatsuka, T. (1987). Antifungal activity of enantiomers of oryzalexins against Pyricularia oryzae. Agric. Biol. Chem. 51: 2017–2018.
  396. Sekido, H. et al. (1986). Oryzalexin D (3,7-dihydroxy-(+)-sandaracopimaradiene), a new phytoalexin isolated from blast-infected rice leaves. J. Pestic. Sci. 11: 369–372.
  397. Mori, K., and Waku, M. (1985). Synthesis of oryzalexins A, B and C, the diterpenoidal phytoalexins isolated from rice blast leaves infected with Pyricularia oryzae. Tetrahedron 41: 5653–5660.
  398. Matsuyama, N., and Wakimoto, S. (1985). Purification and characterization of anti-blast substance, S-1, formed mainly in blast-resistant lower rice leaves. Ann. Phytopathol. Soc. Jpn. 51: 498–500.
  399. Kono, Y., Takeuchi, S., Kodama, O., Sekido, H., and Akatsuka, T. (1985). Novel phytoalexins (oryzalexins A, B and C) isolated from rice blast leaves infected with Pyricularia oryzae. Part II: structural studies of oryzalexins. Agric. Biol. Chem. 49: 1695–1701.
  400. Akatsuka, T., Kodama, O., Sekido, H., Kono, Y., and Takeuchi, S. (1985). Novel phytoalexins (oryzalexins A, B and C) isolated from rice blast leaves infected with Pyricularia oryzae. Part I: isolation, characterization and biological activities of oryzalexins. Agric. Biol. Chem. 49: 1689–1694.
  401. Matsuyama, N., and Wakimoto, S. (1984). On an antifungal substance mainly accumulated in lower rice leaves infected with rice blast fungus Pyricularia oryzae Cav. Ann. Phytopathol. Soc. Jpn. 50: 379–382.
  402. Kono, Y., Takeuchi, S., Kodama, O., and Akatsuka, T. (1984). Absolute configuration of oryzalexin A and structures of its related phytoalexins isolated from rice blast leaves infected with Pyricularia oryzae. Agric. Biol. Chem. 48: 253–255.
  403. Akatsuka, T., Kodama, O., Kato, H., Kono, Y., and Takeuchi, S. (1983). 3-Hydroxy-7-oxo-sandaracopimaradiene (oryzalexin A), a new phytoalexin isolated from rice blast leaves. Agric. Biol. Chem. 47: 445–447.
  404. Atkinson, P., and Blakeman, J.P. (1982). Seasonal occurrence of an antimicrobial flavanone, sakuranetin, associated with glands on leaves of Ribes nigrum. New Phytol. 92: 63–74.
  405. Cartwright, D.W., Langcake, P., Pryce, R.J., Leworthy, D.P., and Ride, J.P. (1981). Isolation and characterization of two phytoalexins from rice as momilactones A and B. Phytochemistry 20: 535–537.
  406. Shimura, M. et al. (1981). Anti-conidial germination factors induced in the presense of probenazole in infected host leaves. I. Isolation and properties of four active substances. Agric. Biol. Chem. 45: 1431–1435.
  407. Watanabe, M., Sakaniwa, S., Uchiyama, M., and Abe, H. (1979). Antimicrobial activities of momilactones against Xanthomonas oryzae and Pyricularia oryzae. Ann. Phytopathol. Soc. Jpn. 45: 509–511.
  408. Sakamura, S., Terayama, Y., Kawakatsu, S., Ichihara, A., and Saito, H. (1978). Conjugated serotonins related to cathartic activity in safflower seeds (Carthamus tinctorius L.). Agric. Biol. Chem. 42: 1805–1806.
  409. Hifnawy, M.S., Vaquette, J., Sévenet, T., Pousset, J.-L., and Cavé, A. (1977). Produits neutres et alcaloides de Myrtopsis macrocarpa, M. myrtoidea, M. novae-caledoniae et M. sellingii. Phytochemistry 16: 1035–1039.
  410. Kato, T. et al. (1977). Growth and germination inhibitors in rice husks. Phytochemistry 16: 45–48.
  411. Kato, T. et al. (1977). Chemical transformation of the diterpene lactones momilactones A and B. J. Chem. Soc., Perkin Trans. 1 250–254.
  412. Cartwright, D., Langcake, P., Pryce, R.J., and Leworthy, D.P. (1977). Chemical activation of host defense mechanisms as a basis for crop protection. Nature 267: 511–513.
  413. Tsunakawa, M. et al. (1976). Momilactone-C, a minor constituent of growth inhibitors in rice husk. Chem. Lett. 5: 1157–1158.
  414. Kato, T. et al. (1973). Momilactones, growth inhibitors from rice, Oryza sativa L. Tetrahedron Lett. 14: 3861–3864.
  415. 大畑貫一, 高坂淖爾 (1967). いもち病病斑形成に対する race 間の局所的干渉作用と病斑部にみられる蛍光性物質について. 農業技術研究所報告 C21: 111–132.
  416. 植原一雄 (1960). 水稲とイネ白葉枯病菌との相互反応によつて生成される phytoalexin について. 日本植物病理学会報 25: 149–155.
  417. 植原一雄 (1960). Phytoalexinの非特異性作用について. 広島農業短期大学研究報告 1: 7–10.
  418. 植原一雄 (1958). 水稲と稲熱病菌との相互反応によるPhytoalexinの生成について. 日本植物病理学会報 23: 127–130.
  419. Asahina, Y., and Inubuse, M. (1928). Über die Konstitution des Naringenins (II. Mitteilung über die Flavanon-Glucoside). Ber. Dtsch. Chem. Ges. 61: 1514–1516.
  420. 朝比奈泰彦, 篠田淳三, 犬伏元太郎 (1928). フラバノングルコシードに就て. 藥學雜誌 48: 207–214.
  421. 朝比奈泰彦, 篠田淳三, 犬伏元太郎 (1927). サクラニンの構造. 藥學雜誌 1927: 1007–1019.
  422. Sonn, A. (1913). Die Konstitution des Naringenins. Phloroglucin-ester von Phenol-carbonsäuren. Ber. Dtsch. Chem. Ges. 46: 4050–4059.
  423. Asahina, Y. (1908). Ueber das Sakuranin, ein neues Glykosid der Rinde von Prunus Pseudo-Cerasus Lindl. var. Sieboldi Maxim. Arch. Pharm. 246: 259–272.
  424. 朝比奈泰彦 (1908). 芳野櫻樹皮中ノ一新配糖體. 藥學雜誌 1908: 213–233.
  425. Will, W. (1887). Ueber das Naringin. Ber. Dtsch. Chem. Ges. 20: 294–304.
  426. Will, W. (1885). Ueber das Naringin. Ber. Dtsch. Chem. Ges. 18: 1311–1325.